当前位置: 首页 机器人投顾 正文

机器学习云平台应具备哪些功能?

来源: 机智金管家 2020-10-22 09:25:47.0

要创建有效的深度学习模型,需要提供大量的数据,对模型进行有效的训练。然后安装模型,对模型进行监视以防止出现漂移,并根据需要对其进行重新训练,以此反复。

作者:J哥杂文  来源:今日头条

机器学习云平台应具备哪些功能?

要创建有效的深度学习模型,需要提供大量的数据,对模型进行有效的训练。然后安装模型,对模型进行监视以防止出现漂移,并根据需要对其进行重新训练,以此反复。

模型的训练需要使用非常多的计算资源,如果您已经投资了大规模的计算资源,您可以在本地完成所有这些工作。但是,你会发现这些计算资源在许多时间处于非活动状态。如果在云平台中进行上述活动,则可能更具成本效益。

大多数云提供商投入大量精力来构建其机器学习平台,以支持整个机器学习生命周期。每个端到端机器学习平台应提供哪些功能呢?

训练数据模型

当你准备好了大量的训练数据之后,您当然不希望迁移这些数据。因为这个过程通常需要花费非常长时间,这意味着您在这段时间内什么事也不能做。对于大型数据集,理想的情况是创建一个已经存在数据的模型,从而避免大量数据迁移。

支持ETL或ELT

ETL(导出,转换和加载)和ELT(导出,加载和转换)是数据库领域中的两种常见数据配置技术。机器学习和深度学习非常需要这些工具,尤其是变换部分。

支持在线模型训练

建立良好的机器学习和深度学习模型需要大规模数据,将这些数据全部下载到本地进行模型训练,是非常费时过程。而且数据规模达到一定规模之后,您会发现很难找到本地资源来存储这些数据,所以支持在线模型训练成本云平台必须要具有的功能。

支持scale-up and scale-out训练

利用云平台,帮助生成多个大型虚拟机或容器环境,加速在本地笔记本进行的训练活动,这将大大较少我们的训练时间。

提供优化的AI服务

云平台为许多应用程序提供了健壮且经过优化的AI服务或解决方案,而不仅仅是图像检测。这些包括语言翻译,语音到文本,文本到语音,预测和推荐。这些服务已经在比企业通常可用的更多数据集中进行了培训和检查。这些也安装在具有足够计算资源的服务端点上,包括加速器,以确认在全球负载下的良好响应时间。


免责声明:本文版权归原作者所有,钱大人登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不构成投资建议。投资者据此操作,风险自担。此文如侵犯到您的合法权益,请联系我们。

关键字: 人工智能
分享到:
  • 在不把微商整顿一下那么你的微信产品真的很危险了 微商里面百分之九十以上都是假货 骗来骗去都是骗的身边好友 可恨又可恶 抵制微商封杀微商
    08-30 19:02

用户推荐

换一换
  • 编程的人

    “编程的人”分享有用,有趣,有范的场景技术,也会分享职业实战培训技术课程!快来加入我们吧,一起学习,分享,互助,让技术流行起来!

  • 机器人007

    关注人工智能机器人、分享科技行业资讯前沿,让未来在这里发声,开启智能新时代

  • 家财

    专治小白理财综合症,深度金融分析,浅显易懂表达,轻松玩转保险、信托、股票、外汇、期货。

  • 李乾儒

    出身于金融班科,从事股票,期货,证券,发售分析工作,拥有5年实战经验。

  • 机器人时代美学

    无人汽车,机器人投顾,机器人工场,一个机器人的时代正在走来!